

 Navigation

 	
 index

 	mhhf_dapple latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mhhf-dapple/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mhhf-dapple/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	mhhf_dapple latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

test.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

 Dapple provides a VM test harness so you can write your tests directly in Solidity. This is less flexible and sometimes more verbose than writing tests in the harness language, but the lack of a context switch makes writing unit tests more pleasant for the developer.

Suppose you want to test this contract:

contract MyRegistry {
 address public _creator;
 mapping(bytes32=>bytes32) _values;
 event Set(bytes32 indexed key, bytes32 value);
 function MyRegistry() {
 _creator = msg.sender;
 }
 function set(bytes32 key, bytes32 value) {
 if(msg.sender != _creator) {
 throw;
 }
 _values[key] = value;
 Set(key, value);
 }
 function get(bytes32 key) constant returns (bytes32 value) {
 return _values[key];
 }
}

A dapple test might look like this:

import 'dapple/test.sol'; // virtual "dapple" package imported when `dapple test` is run
import 'myregistry.sol';

// Deriving from `Test` marks the contract as a test and gives you access to various test helpers.
contract MyRegistryTest is Test {
 MyRegistry reg;
 Tester proxy_tester;
 // The function called "setUp" with no arguments is
 // called on a fresh instance of this contract before
 // each test. TODO: Document when to put setup logic in
 // setUp vs subclass constructor when writing Test subclasses
 function setUp() {
 reg = new MyRegistry();
 proxy_tester = new Tester();
 proxy_tester._target(reg);
 }
 function testCreatorIsCreator() {
 assertEq(address(this), reg._creator());
 }
 function testFailNonCreatorSet() {
 MyRegistry(proxy_tester).set("no", "stop");
 }
 event Set(bytes32 indexed key, bytes32 value);
 function testSetEvent() {
 expectEventsExact(reg);
 Set("hello", "hi");
 reg.set("hello", "hi");
 }
}

Further docs:

Testing Exceptions [https://github.com/nexusdev/dapple/blob/master/doc/test_errors.md]
Testing Events [https://github.com/nexusdev/dapple/blob/master/doc/test_events.md]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

test_events.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Test Events

This test feature tests the exact emitted event sequence produced by a transaction.

Example

A contract which implements a set of Events:

contract EventDefinitions {
 event info(bytes data);
 event warn(bytes data);
}

contract Contract is EventDefinitions {
[...]
 function fire() {
 info("ok");
 warn("warning");
 }
}

In order to assert that in a scenario a correct sequence of events is emitted
one can bind the events of contract instance with expectEventsExact(<target>).
After a binding, the test function has to emit the expected events in the same
order in which they are expect in the bound instance.
This assert the correct event types, correct inputs for a type and the
correct order of emits. Also expected but not emitted and unexpected
events are leading to a test fail.

The easiest way to use this is to follow the pattern of defining events in their own
container type like EventDefinitions, then have both the implementation and the tester
derive from it.

passing example

The following shows a passing test:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("warning");
 target.fire();
 }

}

failing examples

The following test will fail because of the wrong order of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 warn("warning");
 info("ok");
 target.fire();
 }

}

The following test will fail because of the wrong type of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 info("warning");
 target.fire();
 }

}

The following test will fail because of the wrong content of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("error");
 target.fire();
 }

}

The following test will fail because an unexpected event is emited:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 target.fire();
 }

}

The following test will fail because an expected event is not emited:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("warn");
 info("success");
 target.fire();
 }

}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

logging.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

NatSpec debugger

It is possible to use this statements in any solidity code:

contract Contract {
 function send (address addr, uint value) {
 //@info user `address addr` has deposit `uint value`eth
 [...]
 //@warn something happened: "`string message`"
 }
}

Which on internal chains will produce the following log output if executed:

INFO: user 0x4cfcedde6a51e5f6b47da226e50c2bb8b055ee62 has deposit 200eth
WARN: something happened: "a strange loop"

On external chains (rpc/ipc connected) the statements are treated as comments and ignored during deploy.

The statements has to have one of the following prefixes:

		//@warn

		//@info

		//@log

		//@debug

Expressions which are surrounded by “`” has to be in the following form: <type> <reference> while
type has to be a valid solidity type and reference points to an actual variable in your solidity code

Reporter

call it with dapple test --report

additional to the logging output to stdout a reporter can be enabled:
In order to use the reporter, inherit from the Reporter contract:

contract MyTester is Reporter {
[...]

during the testSetup you have to specify an output file by calling the setupReporter function:

setupReporter('doc/report.md');

Now you can use the //@doc command which writes to the reporting file instead of stdout.

Also a modifier wrapCode(string what) is provided which wraps all output in a code block. Here an example:

function drawTree() wrapCode("dot") {
 uint numNodes = contract.numNodes();
 //@doc digraph A {
 for(var i=1; i<numNodes; i++) {
 uint parent = contract.getParentForNode(i);
 //@doc node_`uint parent` -> node_`uint i`;
 }
 //@doc }
}

Will produce the following code in doc/report.md:

` ``{dot}
digraph A {
 node_0 -> node_1;
 node_0 -> node_2;
 node_2 -> node_3;
}
` ``

with a custom post-processor (like knitr) wrapped code can be further evaluated. In this case to a graphviz image:
[image:]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

test_errors.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Test Errors

This test feature captures thrown Errors (VM exceptions) of a transaction.
All test functions which are starting with testThrow, testFail or testError
are expected to crash: a throw; is expected somewhere in the scenario.

Example

Suppose the following contract:

contract Contract {
 [...]

 function crash() {
 throw;
 }

 function passing() {
 // nothing
 }
}

passing

The following shows a passing test, because an expected throw actually happens:

contract MyTest is Test {
 function testThrow() {
 Contract target = new Contract();
 target.crash();
 }
}

failing

The following test fails, because the function name has a wrong prefix:

contract MyTest is Test {
 function testCrash() {
 Contract target = new Contract();
 target.crash();
 }
}

The following test fails, because no expected throw happens:

contract MyTest is Test {
 function testError() {
 Contract target = new Contract();
 target.passing();
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

devtool-casestudy.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Embark

CLI

 Usage: embark [options] [command]

 Commands:

 new [name] New application
 deploy [env] deploy contracts
 build [env] build dapp
 ipfs [env] build dapp and make it available in ipfs
 run [env] run dapp
 spec run tests
 blockchain [env] run blockchain
 geth <env> [args...] run geth with specified arguments
 demo create a working dapp with a SimpleStorage contract
 meteor_demo create a working meteor dapp with a SimpleStorage contract
 simulator run a fast ethereum rpc simulator

 Options:

 -h, --help output usage information
 -V, --version output the version number

Truffle

CLI

Truffle v0.2.1 - a development framework for Ethereum

Usage: truffle [command] [options]

Commands:

 build => Build development version of app; creates ./build directory
 compile => Compile contracts
 console => Run a console with deployed contracts instanciated and available (REPL)
 create:contract => Create a basic contract
 create:test => Create a basic test
 deploy => Deploy contracts to the network
 dist => Create distributable version of app (minified); creates ./dist directory
 exec => Execute a Coffee/JS file within truffle environment. Script *must* call process.exit() when finished.
 init => Initialize new Ethereum project, including example contracts and tests
 init:config => Initialize default project configuration
 init:contracts => Initialize default contracts directory
 init:tests => Initialize tests directory structure and helpers
 list => List all available tasks
 resolve => Resolve dependencies in contract file and print result
 serve => Serve app on http://localhost:8080 and rebuild changes as needed
 test => Run tests
 version => Show version number and exit
 watch => Watch filesystem for changes and rebuild the project automatically

Populus

CLI

Usage: populus [OPTIONS] COMMAND [ARGS]...

 Populus

Options:
 --help Show this message and exit.

Commands:
 attach Enter a python shell with contracts and...
 chain Wrapper around `geth`.
 compile Compile project contracts, storing their...
 deploy Deploy contracts.
 init Generate project layout with an example...
 web HTML/CSS/JS tooling.

Spore

CLI

Usage:
 spore init
 spore upgrade
 spore publish
 spore add <path>
 spore link

 spore info [<package>]
 spore install [<package>]
 spore clone <package>
 spore uninstall <package>

 spore chain list
 spore chain select <name>
 spore chain add <name>
 spore chain remove <name>

 spore update
 spore search <string>

 spore instance add <package> <address> [--contract=<contract>]
 spore instance list <package>

 spore bin list
 spore bin call <name> [<args>...]
 spore bin bundle [<package>]
 spore bin remove <name>

 © Copyright 2016.
 Created using Sphinx 1.3.5.

install_publish.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Install and Publish

Note: DapphubDB address not finalized, use caution until this notice is removed.

DapphubDb

Dapple is capable of interacting with an on-chain package registry for installing
and publishing packages. IPFS is used as a storage and data transfer layer.
A dapple package is content addressed by an ipfs hash. The hash is stored along
with the package name and semantic version on the ethereum chain.
In order for this to work the user must have a working Ethereum and IPFS connection
specified in his ~/.dapplerc.

installing

The command to install a package from the registry is:

dapple install [--save] [options] [<package> <url-or-version>]

E.g. dapple install dappsys 0.1.0 --save

This will install dappsys package at version 1.0.0 from the registry which is
deployed to morden chain and save this dependecy to the local dappfile, which
is indicated by the --save flag.

All packages with are specified in the dependency section of the local dappfile
can be installed with dapple install:

[...]
dependencies:
 dappsys: 0.1.0

publishing

To prevent pollution of the global namespace, publishing is currently restricted
to a few trusted dapple developers who curate the registry.
This is ensured by the authentication system provided by dappsys [https://github.com/nexusdev/dappsys] framework.
The intent is to enable open publication as soon as some kind of arbitration or at least
initial distribution scheme is invented. It is possible to update the system in-place,
and there will be no need to redeploy the data store contract which dapple reads from.

The command dapple publish [options] will build the current package based on
the specifications given in the local dappfile and publish it to the registry
on the specified chain. For this a version tag and a name has to be specified
in the local dappfile:

name: mypackage
version: 1.0.0
[...]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

definitions.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Definitions

Last updated 0.2.0

basics

The term “contract” introduces ambiguity. We use the familiar terms “class” and “object” instead.

class definition: A Solidity “contract” definition (potentially any bit of code that can be deployed)

classname - a class (type) name used during compilation

class header - classname + the sol/js ABI for a class

objectname - the name of an address in an abstract contract system, like my_root_registry.

object reference - objectname + address.

object header - objectname + class header.

object: object reference and header.

system

system variables: A set of object headers.

environment:: A set of object references.

context: A mapping of system variables to an environment, defined as a union of
one or more other environments. For example, you might have a “working environment”
or an environment with no blockchain, but a context is associated with a specific
blockchain and a specific set of contracts.

LINK(objectname) macro: a preprocessor macro used in Solidity code.
It is populated with a unique dummy address by the dapple preprocessor.
You can think of using LINK as adding a special type of argument to
the constructor which can only be called at deploy time (by a key
and not an address).

class template definition: Any class definition that has a LINK macro.

class template header: A class header + metadata about LINKs (set of objectnames)

dev cycle

build step

A process that adds an object reference to environment

deploy

deploy step: An instruction that makes a change to a (staged package?) AND/OR the global network state

* pending: dapple sent a transaction, but has not confirmed the action
* complete: dapple has confirmed that the transaction had the intended effect and is permanent

deploy script: A sequence of deploy steps associated with a particular (workspace/environment?).

chain management

chain config - A chain connection descriptor (rpc config, datadir)

chain - Enough metadata to unambigously specify a blockchain database.
Two default chains are named ethereum and localtestnet.
Chains have a default chain config, but a chain might have multiple valid
chain config options (connect to the same network/blockchain through different connections).

not finalized

packfile vs dappfile (vs libfile?)

chain context: A set of named addresses (possibly null/undefined) for a given blockchain.

contract sources: A set of Solidity source files.

package: collection of contract sources with a chain context, name, version, and list of dependencies.

bound package: A package with all named addresses defined.

unbound package: A package with at least one undefined named address.

staged package: A package whose chain context can be modified.

complete package: A package that can be bound with the result of the deploy script of a collection of some dependent package

system instance: The set of objects named by the chain context of a deployed system type.

A package will typically ship a dev deploy sequence which will create a chain context which mocks the
one deployed on Ethereum.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

dapplerc.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

 While package dappfiles contain settings relevant to their respective packages,
dapplerc files contain settings relevant to the global development environment.
Dapple creates a basic dapplerc file upon its first run. The file is saved under
the name .dapplerc in the user’s home directory, at which point the user may
choose to customize it beyond what Dapple’s dapplerc wizard allows for.
Understanding the format of dapplerc files is of course a necessary
prerequisite.

Note that the dapplerc format is still under development, so the information in
this document may occasionally fall out of step with reality. When in doubt,
consult the source code. The automated tests are the authority on intended
behavior.

Each dapplerc file includes at the top level an environments mapping of
environment names to IPFS and Ethereum client settings. Each environment name
either maps to another environment name, making it an alias for that
environment, or to a mapping with the keys ethereum and ipfs.

For example:

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'

The default environment is special. All other environments are derived from
it. If a setting is left undefined in an environment, the value of default is
taken. In other words...

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'
 account: '0xdeadbeef'

 internal:
 ethereum: 'internal'

...is equivalent to...

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'

 internal:
 ethereum: 'internal'
 ipfs:
 host: 'localhost'
 port: '4001'

The 'internal' value for the ethereum key is also special. This indicates to
Dapple that it ought to spin up a fresh internal EVM chain and use that when
this environment is specified.

The host and port settings in both ipfs and ethereum tell Dapple how to
connect to IPFS and Ethereum via JSON-RPC. The account setting in ethereum
indicates which account to use when deploying and publishing packages via
dapple deploy and dapple run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

deployscript.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

 Dapple understands a simple domain specific language which allows you to write
scripts to automatically set up contract systems on a specified chain.
This includes deploying and calling contracts, logging values, persistently
saving values, importing values from the current environment and dependant packages.

How to

A script is usually written either to the package root or a scripts directory.
It can be called with dapple run <script> [--force] [--no-simulation] [options]

If only a specific expression needs to be executed it can be called without a
script with dapple step <string> [options].

The script is always executed against an environment which is specified in the users local ~/.dapplerc.
This happens in two steps: First the execution is simulated against the internal chain.
This catches errors in the script. If an error occurs during the simulation,
dapple throws an error and stops the execution. The --force flag can be specified,
to force dapple to continue the execution despite an error.

The simulation also gathers data about the script such as the exact gas prices for each
operation. This prevents any errors which could be caused by wrong gas parameters.
Only after after a simulation is executed successfully it is run against the specified environment.
The simulation can also be omitted by run a script with the --no-simulation flag.

Every operation, which actually triggers a chain state change (deploy, call) is
verified after a standard confirmation time of 4 Blocks.

Operations

deploy

new <class name> [. gas(<gas>) |. value(<value>)]* (<args>)

This deploys the class “Contract”. A deploy statement is always indicated by
the keyword new followed by a class name. The contract class has to be available
in one of the contract source files of the dapple project.
An custom amount of gas and value can be passed during the deploy by specifying
.gas(<gas>) and value .value(<value>).

example

new Contract.value(1000000)("contract name")

call

<object>.<function name> [. gas(<gas>) | .value(<value>)]* (<args>)

This send a transaction to an object by calling the specified function name.
Gas and Value can be passed much like during a deploy.
If the function is static, the call don’t triggers a transaction and returns a value
which can be saved to a variable.

example

object.setName.value(100000)("name")

import

import [pkg .]* <var>

This imports a variable out of the current environment of the specified package tree.

example

import pkg1.pkg2.contract

export

export <var>

This persistently saves a variable out of the current script scope to
the current environment in the dappfile.

example

var var = 2
export var

log

var fortytwo = 42
log fortytwo

This logs an arbitrary variable to stdout.

Example

The script ./deployscript

// import envObject from the current environment
import envObject

// import pkgObject from the current environment of the package "pkg"
import pkg.pkgObject

// deploy a new ContractA instance
var internalObject = new ContractA()

// string for later use
var internalString = "objectName"

// deploy a new ContractB instance with two addresses as parameters
var externalObject = new ContractB(pkg.pkgObject, envObject, internalObject)

// call a function on the contract
externalObject.setName(internalString)

// persistantly save a value
export externalObject

run with:
dapple run ./deployscript -e morden

will produce the following output:

DEPLOYED: ContractA = 0x89e020ed6a30e8d5a05f6c6ee77a81c46934ba25
GAS COST: 510111 for "new ContractA"
Waiting for 4 confirmations: confirmed!
DEPLOYED: ContractB = 0x17d41b0d0e290f9c6be4c610b7db654464ee6425
GAS COST: 1666288 for "new ContractB"
Waiting for 4 confirmations: confirmed!
CALLED: ContractB("externalObject").setName(internalString)
GAS COST: 18348 for "call ContractB.setName(internalString)"
Waiting for 4 confirmations: confirmed!

and save the exports to the current dappfile under the executed environment:
The dappfile /dappfile

[...]
environments:
 morden:
 objects:
 externalObject:
 class: ContractB
 address: '0x17d41b0d0e290f9c6be4c610b7db654464ee6425'
[...]

Roadmap

The following planned features will get implemented next (not ordered):

		Simulating the deployment on a real chain fork.

		assertions

		Type checking the script on compile time + type inference.
		This will reduce possible errors done while writing a script.

		Call and return values from non-static functions.

		Call functions which return multiple values

		Saving and resuming a scripts state on every step.
		This prevents losing any information during a deploy.

		Managing different addresses out of the coinbase which are performing operations.

		Script subroutines and importing/calling the subroutinges from packages.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

tutorials/token.html

 Navigation

 		
 index

 		mhhf_dapple latest documentation »

Making a Token

Taking a page out of Alex Van de Sande’s
book [https://blog.ethereum.org/2015/12/03/how-to-build-your-own-cryptocurrency/],
I am going to demonstrate building a token contract that implements the token
standard (EIP 20 [https://github.com/ethereum/EIPs/issues/20]) using Dapple.
This is a much more code-heavy approach than Alex’s, though, and is geared
toward developers who like test driven development and prefer the CLI to GUIs. I
will be building this using the Nexus Developer Docker
image [https://github.com/NexusDevelopment/devenv-docker]. You will not need
this image to follow along, but it might make it easier for you to get started
if you don’t already have an Ethereum development environment set up.

Install Dapple

If you aren’t using the Docker image, you will probably need to install Dapple.
Doing so is as simple as:

$ git clone https://github.com/NexusDevelopment/dapple.git
$ cd dapple
$ npm install -g .

Verify that Dapple is installed:

$ dapple
Usage:
 dapple config
 dapple init
 dapple install [--save] [<package>]
 dapple build [options]
 dapple chain
 dapple step
 dapple test [options] [--skip-build]

Your first time running Dapple, you will be prompted a few times for some
configuration settings. Dapple uses these to connect to IPFS and your Ethereum
client. We won’t be connecting to either service for this tutorial, so go ahead
and accept the defaults. If you want to change your settings later on, you may
do so by either running dapple config or by editing ~/.dapplerc.

Create your package

The root of a Dapple package is defined by the presence of a dappfile. To
start, create a directory to hold your project. For the sake of the tutorial,
let’s call it “mytoken”.

$ mkdir mytoken
$ cd mytoken

dapple init generates a simple boilerplate dappfile in the current
directory. Run that now:

$ dapple init

If no errors are displayed, the initialization was a success. You should be able
to see the boilerplate dappfile in your current directory, along with a couple
other directories:

$ ls
build dappfile src

By default, build is where the output of dapple build gets put, and
src/sol is where Dapple looks for your contract source files. Both of these
are configured in your dappfile and can be overridden. For this tutorial,
we’ll leave them as-is.

Since we’re demonstrating a TDD flow here, let’s start by making a directory for
our test contracts:

$ mkdir src/sol/test

So what interface do we want our contract to have? Well, at the very least we
are going to want to implement EIP 20. For this exercise, we are going to use
the Dappsys library [https://github.com/NexusDevelopment/dappsys] for that
purpose. The Dappsys library provides a basic token contract which we will build
on top of, as well as a function that runs tests to ensure the EIP 20 functions
work the way they should. Let’s start there:

$ vim src/sol/test/token_test.sol

import 'dapple/test.sol';
import 'dappsys/token/token_test.sol';
import 'mytoken.sol';

contract MyTokenTest is Test {
 function testEIP20() {
 var token = new MyToken(100);
 var tester = new TokenTester();

 // TokenTester needs a starting balance of 100 tokens.
 token.transfer(address(tester), 100);
 assertTrue(tester.runTest(token));

 }

}

Awesome. Now we’ve got a test that makes sure our soon-to-exist token contract
implements basic EIP 20 functionality correctly. And if we run dapple test,
we’ll see our new test fails brilliantly:

$ dapple test
Error: Unable to resolve import path 'dappsys/token/token_test.sol' in file
'/home/dev/mytoken/src/sol/test/token_test.sol'

Notice the path it’s complaining about. Why didn’t it complain about
dapple/test.sol? Dapple injects a couple “virtual contracts” into the build
stream. (At the time of writing, dapple/test.sol and dapple/debug.sol.)
These contracts don’t exist in your project’s directory, but are still
importable.

Let’s address the error at hand by installing the dappsys package.

$ dapple install --save NexusDevelopment/dappsys
Cloning into 'dapple_packages/dappsys'...

This pulls the dappsys repository from the NexusDevelopment account on
Github into your dapple_packages directory and saves the dependency to your
dappfile. At this point, your dappfile looks something like:

layout:
 sol_sources: src/sol
 build_dir: build
dependencies:
 dappsys: NexusDevelopment/dappsys

Running dapple test again at this point yields:

Error: Unable to resolve import path 'mytoken.sol' in file
'/home/dev/mytoken/src/sol/test/token_test.sol'

To resolve this, we’ll create the missing file and define our token contract:

$ vim src/sol/mytoken.sol

import 'dappsys/token/base.sol';

contract MyToken is DSTokenBase {
 function MyToken(uint supply) DSTokenBase(supply) {}
}

Running tests again, you should see something like the below in your output:

$ dapple test
...
MyTokenTest
 test e i p20
 Passed!
...

By extending the DSTokenBase class in the Dappsys package, we’ve gotten
ourselves EIP20 support for free! Let’s add a little more functionality to our
token class now. For this exercise, we’re going to keep track of how many tokens
get transferred between users during the lifetime of our contract.

Right below the testEIP20 function in src/sol/test/token_test.sol, let’s add
the following code:

function testTransferredCount() {
 var token = new MyToken(100);
 assertEq(token.transferred(), 0); // Starts at zero.

 var tester = new TokenTester();
 token.transfer(address(tester), 10);
 assertEq(token.transferred(), 10, "Didn't register transfer.");

}

And then run the tests to make sure the test fails:

$ dapple test
Testing...
Using local solc installation...
/home/dev/mytoken/src/sol/test/token_test.sol:17:19: Error: Member "transferred"
not found or not visible after argument-dependent lookup in contract MyToken
 assertEq(token.transferred(), 0); // Starts at zero.
 ^---------------^

Alright, add the missing property to src/sol/mytoken.sol:

...
contract MyToken is DSTokenBase {
 uint public transferred;
...

$ dapple test
...
MyTokenTest
 test e i p20
 Passed!

 test transferred count
 LOG: log_bytes32
 LOG: val: Not equal!
 LOG: log_bytes32
 LOG: val: Didn't register transfer.
 LOG: log_named_uint
 LOG: key: A
 LOG: val: 0
 LOG: log_named_uint
 LOG: key: B
 LOG: val: 10
 Failed!
...

Okay, so our test works. Now let’s turn it green:

import 'dappsys/token/base.sol';

contract MyToken is DSTokenBase {
 uint public transferred;

 function MyToken(uint supply) DSTokenBase(supply) {}

 function transfer(address to, uint value) returns (bool ok) {
 transferred += value;
 return super.transfer(to, value);

 }

 function transferFrom(address from, address to, uint value)
 returns (bool ok) {
 transferred += value;
 return super.transferFrom(from, to, value);

 }

}

And now our test should pass:

$ dapple test
...
MyTokenTest
 test e i p20
 Passed!

 test transferred count
 Passed!
...

Huzzah! So what now? You’ll probably want to put some sort of GUI on this, and
that probably means integrating your smart contract with Javascript. Dapple
provides a Javascript boilerplate generator that provides a wrapped Web3
Contract object to make the handoff to your frontend developers easier.

$ dapple build
$ ls build/
__dapplecontractmap__ __dapplesourcemap__ classes.json js_module.js

You can ignore __dapplecontractmap__ and __dapplesourcemap__ for now.
classes.json might be of interest, as it contains the Solidity compiler’s JSON
output. But for our purposes, we’re interested in js_module.js.

js_module.js is a Browserify-able file that contains the ABI definitions and
bytecode for the contracts in your package. In particular, it exports a class
that contains:

		A classes object populated with Javascript classes similar to the Web3
Contract class, with the addition of a deploy function which acts as a proxy
for the contract’s constructor. The keys of the object correspond to the names
of your contracts.

		An objects object populated with Web3 Contract objects pointed at any
deployed contracts in the environment specified at build time. The keys of the
object correspond to the keys in your environment’s objects map. The
environment bound at build time may also be overridden by passing in an
alternative environment object to the module’s constructor.

What was that about environments in that last bullet point? Well, you can define
an environments key in your package’s dappfile which contains an objects map
indicating the pre-deployed contracts that should be made available via
js_module.js. For example, let’s say we deployed an instance of MyToken with
2.1 quadrillion tokens at the address 0xf00bar and we wanted that to be
available to our frontend developer via the name myBitcoinEth.

In our dappfile we’d add the following lines:

environments:
 live:
 objects:
 myBitcoinEth:
 class: MyToken
 address: 0xf00bar

The environment you want to build with can be passed to dapple build via the
-e flag. If the flag isn’t set, its value defaults to evm. In our example,
we want the live environment:

$ dapple build -e live

After that, your frontend developer can interact with your deployed contract
pretty easily:

var myBitcoinEth = (new require('js_module.js')()).objects.myBitcoinEth;
myBitcoinEth.transfer('0xdeadbeef', 10); // Send 10 tokens to 0xdeadbeef.

All the environments defined in your package’s dappfile also get output as JSON
files to the environments subdirectory of your package’s build directory.
The contents of these JSON files can optionally be passed to your js_module
class when you instantiate it. Doing so will override the default environment
your js_module class was built with.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

